
Additional mathematical results

In this appendix we consider some useful mathematical results that are relevant to three-
dimensional computer graphics but were not considered in the book itself.

0.1 The intersection of a line with non-planar primitive
shapes

In this section we consider the calculation of the point of intersection between a line and some
non-planar shapes that often occur in 3DCG work.

0.1.1 Intersection of a line with a sphere

A sphere is specified by two parameters: a position vector,Pc, giving the center of the sphere
and a scalar r, its radius. A line p = Pl + µd intersects the sphere once, twice or not at all.

Figure 1 shows two paths from the origin O to the point p on the surface of the sphere where
the line pierces it.

Equating the two vector paths to the point p gives:

Pc + q = Pl + αd (1)

α is the length along the line from Pl to the point of intersection between line and sphere. Since
q is a vector that extends from the center, to the surface, of the sphere its length is r and thus
q · q = r2. Writing equation 1 as:

αd+ (Pl −Pc) = q

and taking the dot product of each side with itself gives:

(d · d)α2 + 2d · (Pl −Pc)α+ (Pl −Pc) · (Pl −Pc) = q · q = r2 (2)

Eliminating q reveals a quadratic equation of the form (aα2 + bα+ c = 0) in α. In this equation
the coefficients are given by:

a = d · d
b = 2d · (Pl −Pc)

c = (Pl −Pc) · (Pl −Pc)− r2

Once α has been determined we can locate p from the equation of the line p = Pl + αd. The
procedure is illustrated in the form of the algorithm given in Figure 2
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Figure 1: Geometry of the intersection between line and sphere.

Plc = (Pl −Pc)
a = d · d
b = 2d ·Plc

c = Plc ·Plc − r2

b4 = b2 − 4ac
if b4 < 0 then no intersection
else {

if b4 < ϵ {

α1 = α2 =
−b

2a
}
else {

b4 =
√
b4

α1 =
(−b+ b4)

2a

α2 =
(−b− b4)

2a
}
p1 = pl + α1d
p2 = pl + α2d

}

Figure 2: Algorithm for determining the intersection of a line and sphere.
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0.1.2 Intersection of a line and a cylinder

A similar argument to that used to calculate the points(s) of intersection between a line and
sphere will produce an algorithm that:

• determines whether there are one, two or no points of intersection, one point of intersection
is quite rare.

• determines whether the intersection is on the side (curved part) or at the end (flat disks)
of the cylinder.

• determines the position vector of the intersection point(s), when they exist.

The geometry of the problem is shown in Figure 3. The cylinder is specified by position vectors
P1 and P2 which define points lying at each end of the axis of a finite cylinder. The cylinder
has radius r and the vector s = (P2 −P1) determines the axis of the cylinder. As before we will
use the following equation for the line: p = Pl + µd.

To develop an algorithm to solve this problem we proceed in the following steps:

1. Find the intersection point(s) between an infinitely long cylinder of radius r and central
axis passing through P1 and P2.

As before, we find two alternate paths leading from the origin to the point of intersection.
They give rise to the equation:

Pl + µd = P1 + λs+ q (3)

where λ is the proportion of s that leads from P1 to a point on the cylinders axis where
the vector q originates. (The argument now proceeds to obtain a quadratic in µ and also
to eliminate λ.)

The vectors s and q are perpendicular, therefore:

s · q = 0 (4)

Since q runs from the cylinder’s axis to its surface:

|q| = r (5)

Eliminating q and λ from 3 results in a quadratic in µ from which the point(s) of intersec-
tion can be determined.

Taking the dot product of both sides of 3 with s and using 4 gives:

(Pl −P1) · s+ µd · s = λs · s

which may be rearranged to give:

λ =
(Pl −P1) · s+ µd · s

s · s
(6)

Substituting 6 into 3 gives:

(Pl −P1) + µd−
(
(Pl −P1) · s+ µd · s

s · s

)
s = q (7)

Taking the dot product of both sides of 7 with themselves and using 5 to eliminate q a
quadratic equation in µ is obtained which may be written as:

aµ2 + 2bµ+ c = 0
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Figure 3: Geometry of an intersection between a line and a cylinder.
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where (with t = (Pl −P1), for clarity):

a = (d−
(
d · s
s · s

)
s) · (d−

(
d · s
s · s

)
s)

b = (d−
(
d · s
s · s

)
s) · (t−

(
t · s
s · s

)
s)

c = (t−
(
t · s
s · s

)
s) · (t−

(
t · s
s · s

)
s)− r2

No real roots to this quadratic implies that the line does not intersect the infinitely long
cylinder and we need proceed no further.

2. If there is at least one real root we must investigate further to determine if the intersection
occurs between the points P1 and P2. For this we need values for λ corresponding to the
root(s)of the quadratic in µ. Starting with the smaller root (µ = µ1) a λ is calculated and
if 0 ≤ λ ≤ 1 there is an intersection on the outside surface of the cylinder at the point
given by Pl + µ1d. If this is not the case a λ corresponding to the larger root(µ = µ2) is
determined and if 0 ≤ λ ≤ 1 there is an intersection on the inside surface.

3. If the point of intersection is on the inside surface of the cylinder it will be necessary to
check the intersection with a pair of disks, radius r, and surface normal in the direction
P2 −P1. One of the disks contains the point P2 and the other the point P1.

To obtain the point of intersection Pi with the disks use the algorithm described in chapter
1. And if the intersection is within the disk (Pi −Pc) · (Pi −Pc) < r2.

A complete algorithm for the intersection of a line and a cylinder is given in two steps, shown
in Figures 4 and 5

0.1.3 Intersection between a line and a regular cone

The argument used in determining the intersection of a line and a cylinder may be developed
further to enable the points of intersection between a line and cone to be obtained. As in the
case of a sphere and a cylinder there may be either none, one or two intersection points. Figure 6
illustrates the location of the point of intersection Pi between a line specified by:

p = P0 + µd̂

and a cone that is defined by the points P1, the apex of the cone, P2 at the base of the cone and
the half angle θ of the cone. To determine the point of intersection Pi, a four step algorithm, is
as follows:

1. For the infinite double cone, with axis AA′, determine any points of intersection with the
line P0 + µd̂ and their location.

2. For points of intersection determine which, if any, intersect the half cone between P1 and
P2, reject any other intersections.

3. Determine whether and where the line intersects a disk centered on P2 and perpendicular
to P2 −P1

4. Depth sort the intersections of cone and disk to make the final choice for Pi

Note:
An important application of this calculation occurs when rendering atmospheric ef-
fects associated with spotlights, for example dust scattering, volume shadowing and
volumetric fog.



6

Step 1: Calculate the intersection point or points

s = (P2 −P1)
Pl1 = (Pl −P1)

A = d−
(
d · s
s · s

)
s

B = Pl1 −
(
Pl1 · s
s · s

)
s

a = A ·A
b = 2A ·B
c = B ·B− r2

b4 = b2 − 4ac
if b4 < 0 no intersection points
else {

if b4 < ϵ {
thus one intersection point, so set

µ1 = µ2 =
−b

2a
}
else {

two intersection points determined by
b4 =

√
b4

µ1 =
(−b+ b4)

2a

µ2 =
(−b− b4)

2a
}
p1 = pl + µ1d
p2 = pl + µ2d

}

Figure 4: Step 1 in determining the intersection between a line and a cylinder, the geometry of
the problem is shown in Figure 3.

Step 2: Consider the values µ1 and µ2 in turn

µ = max (µ1, µ2)

λ =
Pl1 · s+ µd · s

s · s
if 0 ≤ λ ≤ 1 {

return intersection on front face
}
µ = min (µ1, µ2)

λ =
Pl1 · s+ µd · s

s · s
if 0 ≤ λ ≤ 1 {

intersection on back face
check disks at ends of cylinders

}

Figure 5: Step 2 in determining the intersection between a line and a cylinder.
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Figure 6: Geometry for determining the intersection between a line and a cone.
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One point worth making in connection with these scenarios is that the line might
originate inside the cone and this will necessitate some other special tests to determine
whether the line is passing from outside to inside or inside to outside at Pi

For completeness the algebra of the first step is now discussed. Consider the intersection of a line
with the double cone as illustrated in Figure 6. The cone extends to infinity in both directions.
The key step in the procedure is to equate two different paths from the coordinate origin O to
Pi

First obtain the unit vector r̂:

r̂ =
P2 −P1

|P2 −P1|
Using two alternate paths Pi may be expressed as:

Pi = P0 + µd̂ or

Pi = P1 + λr̂+ q

for appropriate λ and µ. These can be equated:

P0 + µd̂ = P1 + λr̂+ q (8)

The vector q is directed radially from the axis of the cone thus q · r̂ = 0. The vector λr̂ joins P1

to the base of q The length of q is l = λ tan θ and since l = |q| we can write: q · q = (λ tan θ)2

To determine λ from equation 8 take the dot product of both sides with r̂:

λ = µ(d̂ · r̂) + (P0 −P1) · r̂ (9)

Substituting 9 in 8 eliminates λ and therefore:

µd̂+ (P0 −P1)− (µ(d̂ · r̂) + (P0 −P1) · r̂)r̂ = q (10)

Writing 10as a polynomial in µ:
Aµ+B = q (11)

with:

A = d̂− (d̂ · r̂)r̂
B = (P0 −P1)− ((P0 −P1) · r̂)r̂

taking the dot product of each side of 11 with itself gives a quadratic equation in µ:

(A ·A)µ2 + 2(A ·B)µ+ (B ·B) = q · q = (λ tan θ)2 (12)

Substituting λ from 9 and rearranging gives a quadratic with µ as the only unknown:

aµ2 + 2bµ+ c = 0 (13)

where:

a = (A ·A)− (d̂ · r̂)2 tan2 θ
b = (A ·B)− (d̂ · r̂)((P0 −P1) · r̂) tan2 θ
c = (B ·B)− ((P0 −P1) · r̂)2 tan2 θ

Once the values of µ satisfying 13 are known a similar argument to that outlined in Step 2 of
section 0.1.2 may be used to complete the determination of the intersection points Pi.
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0.2 Some other useful non geometric mathematical results

Chapter 1 dealt primarily with geometrical results necessary for developing algorithms used
in 3D computer graphics. There are a few other mathematical topics that have utility when
developing these algorithms and they are dealt with in this section.

0.2.1 Random number generation

Computer languages, particularly C and C++ normally have quite poor random number gen-
eration. They are limited to returning pseudo random integers in the range 0 − 32767. Some
computers now offer the drand48() function, which is good but, for systems that don’t offer it
the short function below which generates a pseudo random double in the interval [0, 1].

long IX=9123,IY=8844,IZ=20846; /* initial state */

void dSeedRandom(long i){

/* use internal integer random number generator to seed the algorithm */

srand(i); IX=rand(); IY=rand(); IZ=rand();

}

double dRandom(void){

IX=imod(171*IX,30269);

IY=imod(172*IY,20207);

IZ=imod(170*IZ,30323);

return (double)fmod((double)IX/30269.0+

(double)IY/30307.0+

(double)IZ/30323.0,1.0);

}

0.2.2 Solving a set of n simultaneous equations

A mathematical task that occurs quite often in computer graphics is finding the solution to a
set of n linear simultaneous equations. Gauss elimination and a host of other techniques have
been developed to perform this task efficiently. Many excellent algorithms have been published
on this subject,. In general the problem can be stated in matrix form as [A][x] = [y], the matrix
[A] is of dimension n × n and the matrices [x] and [y] are of size n × 1. The matrix [x] is the
unknown. One method of solution is to obtain the inverse of [A] and write [x] = [A]−1[y]. This
approach is very inefficient. However, sometimes the equations show a particular structure when
shortcuts may be taken.

For example the problem of finding the parameters for the cubic spline curves gives rise to a
set of linear equations where many elements of the [A] matrix are zero. In fact all the non-zero
elements lie on the three central diagonals of [A]. Matrices with this special property are solved
very rapidly and the algorithm for their solution is presented here.

Given the known matrix A of dimension n× n, the known vector y of dimension n times1 and
the unknown vector of dimension n× 1 satisfying [A][x] = [y] the problem may be expressed as:

b0 c0 0 0 .. 0
a1 b1 c1 0 .. 0
0 a2 b2 c2
.. .. .. .. .. ..
0 .. 0 an−2 bn−2 cn−2

0 .. 0 0 an−1 bn−1




x0

x1

x2

..

..
xn−1

 =


y0
y1
y2
..
..

yn−1
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where ai, bi and ci are the non-zero entries of [A]. To solve for the xi the following efficient two
step algorithm is used:

1. Work through all the i from 1 to n− 1 replacing the bi with:

bi −
ai
bi−1

ci−1

At the same time replace the yi with:

yi −
ai
bi−1

yi−1

2. Obtain the results, first set :

xn−1 =
yn−1

bn−1

Then work through all the i from n− 2 back to 0 to calculate the remaining xi:

xi =
yi − ciyi+1

bi

The execution time of this algorithm is near linear with respect to n.


